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Summary. Several coupled-cluster methods based on a single-determinantal ref- 
erence function have been applied to the model system composed of four 
hydrogen atoms in a trapezoidal arrangement. For nondegenerate regions all 
methods with the exception of CCD provide results within 1 mhartree of the 
exact (FCI) value. For degenerate regions such an accuracy can be achieved with 
the inclusion of the T3 and T4 clusters, in an iterative and in a noniterative 
manner. We report results for CCSDT, CCSDTQ-1, CCSD +TQ*(CCSD), 
CCSD + Q(CCSDT) plus other methods. In particular, the ACP method which 
has been proposed to indirectly account for T4 terms is critically analyzed by 
including all T3 contributions. 

Key words: Single-reference coupled-cluster - H4 model system - Quasidegener- 
ate problems 

1. Introduction 

Since the introduction of coupled-cluster (CC) theory into quantum chemistry by 
(~i~ek [ 1], dramatic progress has been achieved in the reliability and accuracy of 
CC results. The expanding literature on the subject (cf. e.g. [2-4]) shows that the 
CC approach is taking a leading position among the methods developed for the 
inclusion of electron correlation. The currently available collection of various CC 
approximations is a result of much effort expended both in the theoretical 
development and in the computer programs. However, the fact that so many 
variants came into existence is a direct consequence of the impossibility of 
performing the full CC (FCC = full CI (FCI)) calculations for real chemical 
systems, i.e., those containing more than several electrons. Nonetheless, when 
developing, implementing and testing various CC approaches, typically we 
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attempt to obtain the closest possible reproduction of the FCI results for energies 
and other properties. 

As we speak about classification of CC approaches, the first distinction lies 
between single- and multi-reference formulations. The latter is deemed important 
when the state of the system requires a multi-reference zeroth-order description 
to introduce essential effects, usually termed "nondynamic correlation." Bond 
breaking phenomena, excited states, and other situations where by symmetry or 
otherwise more than one configuration is required, constitute such examples. 
Such approaches are now available and, although they are more difficult to 
implement, the results are encouraging [4-9]. However, if we would like to be 
more precise with respect to the distinction between single- and multi-reference 
approaches we should instead recognize that the need for a multi-reference (MR) 
function arises from the fact that the applicable single-reference (SR) approach 
is too severely truncated to be adequate. If we would be able to include high 
enough clusters in the CC scheme to approach the FCI results, then we would 
never need a MR approach. However, the higher clusters that are included the 
more difficult and more costly the method. Obviously, this is connected with the 
fact that we must include in the wavefunction expansion a very large number of 
configurations. It may happen that most of them are comparatively unimportant, 
with some being essential. This is usually the case when we apply the MR 
approach, which is simply an intelligent technique to select from the higher 
excitation clusters those that are most important and incorporate them preferen- 
tially into a computational scheme. 

Alternatively, the SRCC approach has several appealing features compared 
to the MRCC. First, the method is straightforward and easier to implement. 
Second, it lends itself to routine applications to a large number of chemistry 
problems. Third, when considering the decomposition of a molecule to all of its 
possible fragments, we do not have to use exorbitant sized reference spaces to 
treat the different decomposition pathways equivalently. Fourth, we need 
not worry about the intruder states which can be a nightmare in MR meth- 
ods, whose avoidance often requires the use of an "incomplete" model space 
which adds formal and computational difficulties. Fifth, there are many more 
problems with converging the MRCC equations than in the case of the SR 
approach. 

We gather from the above that the main problem with the SRCC calcula- 
tions is the high computational n-dependence of some terms included in the CC 
equations (n is the size of the basis set). For very advanced approaches, we may 
encounter some terms which are computed as n 8, sometimes even a s  n 9 o r  n 1° 

procedures. Hence, the main effort in studies of the SRCC approaches is 
directed towards developing methods which should include high rank clusters 
and consequently give results close to those of FCC, while at the same time 
should exhibit low n-dependence in computations. 

The attempts in developing such SRCC methods are of two types. The first 
is aimed at inclusion into the expansion of still greater numbers of connected 
cluster operations Tn, retaining at the same time all the features of the standard 
CC theory. We will call such formulations standard CC approximations. The 
second group of methods attempts to reproduce the exact results by modifying 
to some extent the inherent iterative nature of the standard CC theory either by 
the inclusion of some contributions in a noniterative manner or by adding or 
removing some terms that do not result directly from the standard CC ap- 
proach. We will refer to these approximations as nonstandard CC methods. 
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The aim of the present paper is to investigate how the variety of single- 
reference approaches work for a difficult case where the reference function is 
usually considered to have a multi-reference character. This problem has already 
been addressed in the literature several times, from polyene model problems with 
semiempirical Hamiltonians [10], to ab initio examples like the simultaneous 
bond breaking in H 2 0  , dissociating the triple bond of N2, or the insertion of Be 
into H2, which have been considered even in the first ab initio CCD [11], CCSD 
[12] and CCSDT-1 [13] applications. A particularly informative example is 
offered by the study of the bond breaking of N 2 and F2 [14] using both a SRCC 
and MRCC. Since we have now at our disposal a great number of SRCC 
methods at varied levels of sophistication, we have decided that it would be 
worthwhile to test them also for a case where the MR approach would be more 
appropriate. 

The system of interest is the H 4 model, introduced by Jankowski and Paldus 
[15] which is composed of four hydrogen atoms in a trapezoidal arrangement. 
All the nearest-neighbor internuclear separations are fixed (a = 2 a.u.) while the 
angle ~b = Hi H2H3 - re/2 varies in the interval ~b ~ (0, re/2). This model is an 
example of a system in which wavefunction degeneracy is observed [15-18]. The 
range of degeneracy of this model is determined by a parameter ~ defining angle 
~b---an. This means that for  the square configuration (~ = 0.0) the FCI co- 
efficients of the ground state Hartree-Fock wavefunction ~b and of that corre- 
sponding to double excitation from highest occupied to lowest unoccupied levels 
are equal [15, 16, 18]. Wavefunction degeneracies usually create a more difficult 
situation for SRCC methods than orbital degeneracies which do not occur in the 
present case. The latter are generally well handled by infinite order CC ap- 
proaches, although finite-order MBPT schemes may fail [14, 21]. On the other 
hand, for wavefunction degeneracies some of the CC methods like LCC(S)D 
(the (S) indicates with or without the single excitations) schemes will fail 
completely due to the occurrence of singularities [18]. 

The H4 system has also been studied using various CEPA like approaches 
[22], Hilbert space MRCC techniques [7-9, 18], quasidegenerate perturbation 
theory [23] and Fock space MRCC methods [24]. 

In the next section we will briefly discuss the CC approaches used in the 
present study. 

2. Coupled-cluster approximations 

Using the exponential type wavefunction the Schr6dinger equation may be 
written as: 

HN eTI ~o5 -- Ecc eT[~o) (1) 

where ~o represents a reference function, most often obtained by the Hartree- 
Fock procedure, and HN is defined as the usual normal-ordered operator: 

H N = ~, fpqN[p'tq] + ¼ ~ (PqIlrsSN[p*q tsr] 
p q  pqrs  

= ~ tpNfptp] + WN = H ° + W u (2) 
P 
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The T operator in Eq. (1) is expressed as the sum of all possible cluster operators 
that can occur for a given system: 

T =  T~ + T2 + T3 +" "" + TN (3) 

where N is the number of electrons in the system. 
The CC equations may be formally written as: 

abc... T (qbijk... I(HNe ) c l~0 )=0  

and rl~ab . . . .  is a one-determinantal configuration in which ~t~ijk... 

i, j, k , . . .  have been replaced by virtuals a, b, c , . . . .  

(4) 

occupied o rb i t a l s  

2.1. Standard CC approximations 

The various CC approaches which we assign to the standard group can be 
created by effecting the truncation either at the level of the cluster expansion, Eq. 
(3), or, once the T operator has been chosen, by truncating the e r expansion in 
Eq. (4). The first case generates a group of methods with the full inclusion of the 
particular sequence of duster operators. Thus by considering in Eq. (1) only the 
/'2 cluster we obtain the CCD method [11], by adding the T~ cluster we arrive at 
the CCSD approximation [12]. Next, the inclusion of triple excitations, T3, 
[13, 25] culminates in the full inclusion of all terms, CCSDT [26, 27] in addition 
to the previous ones. Finally, also adding the T4 cluster creates the CCSDTQ 
method [28]. We note that the inclusion of the given rank cluster is revealed 
directly in the acronym used for the method. The principal characteristic of the 
computer efficiency of the particular method is given by the n-dependence, 
describing roughly the dependence of the required computer effort on the size of 
the basis set. Both CCD and CCSD methods scale a s  n 6 (actually 2 4 noccnvirt), while 
the CCSDT method is two powers worse, n 8 (actually noccnvirt3 5 and noc~n~irt) , 4  4 and 
finally the last of the considered methods (CCSDTQ) is an n l° (nnoccn6virt) 
procedure. 

It follows from the above that the full inclusion of the given sequence of 
cluster operators, particularly T3 and T4 clusters, makes the resulting equations 
very complicated and computationally difficult, hence the need for having 
methods with an intermediate level of complexity and, hopefully, with the 
corresponding level of accuracy. Thus we come to the second truncation tech- 
nique performed at the exponential expansion level. Respective CC approaches 
are indicated by the arabic number preceded by a hyphen, e.g. various CCSDT-n 
approaches [13, 25, 26] differ mainly in the number of T 1, T2, and T 3 operators 
and their products included in the equation for the ,abe amplitude. Following this ~ i jk  

procedure the CCSDT-1 method [13] is defined by the following set of equations: 

( 0 7  I[nu(e T, + r2 + T3)]~ 140 ) = 0 

(¢~b I[nu(e T, + T2 + Z3)]~ I~0) = 0 (5) 
( ri~ abc ~-,jk I(HNT=LI~o) = 0 

The method defined in this way is correct through the fourth-order energy in 
MBPT and second-order wavefunction, as is the full CCSDT method, but 
contrary to the latter scales only a s  n 7. Furthermore, unlike full CCSDT, it does 
not require intermediate storage of T 3 amplitudes. In an analogus manner we 
define a method which partially includes connected quadruples on top of the full 
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CCSDT approach, as CCSDTQ-1 [28]. The CC equations pertinent to this 
method are the following: 

<cbal(HNer'+ r2+ rz)~l~o> = 0  

<g~b ][HN(e r, + ~+ ~ + T4)]~ [go> = 0 

<(~abc l(HNer, + T2+ r3)~ ]go> = 0 
- -  i j k  

abcd  2 <g,jk, I[HN(T=/2 + Z,)]~ Iq'o> = 0 

(6a) 
(6b) 

(6c) 

(6d) 

The latter method gives the energy correct through the fifth order of MBPT and 
scales a s  n 9. 

To explore in a more detailed way the importance of the T4 equation for the 
present model we have introduced another approximation called CCSDTQ-2a 
which includes additional diagrams. Now the last line of Eqs. (6) will become: 

ob~d 2 T2 r3)]~ Iq~o > = 0  (7) <gij~, [[HN(T2/2 + T3 + 

where the new term corresponding to the disconnected pentuples gives a sixth- 
order MBPT contribution and is computed with the same n-dependence. An 
important thing about T4 contributions as given by Eqs. (6, 7) is that when they 
are included in a noniterative manner their n-dependence is lower than n 9. 

We may benefit more from this when we go to the nonstandard CC 
approaches, which is the topic of the next subsection. 

2.2. Nonstandard CC approximations 

First we discuss schemes in which the higher rank dusters are included in a 
noniterative manner. The general strategy in these approaches relies on determin- 
ing T2 (and T~) amplitudes by performing standard CCD (CCSD) calculations 
and then using the converged values of t~ b (and tT) to perturbatively include 
effects of triple and quadruple contributions. In the following we give a very brief 
description of the approximations applied in the present calculations. 

2.2.1. CCSD +T(CCSD). The simplest approach in this spirit is a T(CCSD) 
method [29] which on top of CCSD evaluates the triple contribution (in the 
canonical SCF ca~e) according to the formula: 

E 1= Z Kg  clnNT21+°>cl2 (8) 
abcij~ ei + ej + e~ -- g. -- eb -- e~ 

and the total energy is expressed as: 

E = E c c s o  + E~ 1 (9) 

In this way we avoid the n 7 procedure when iterating CC equations; however 
the last step, according to Eq. (8) requires a n  n 7 step, or the same as in the 
standard CCSDT-1 method. We should mention here that in our notation X (n) 
refers to the nth-order MBPT correction to the quantity X, whereas X tnl 
represents what we call an nth-order-type contribution which is created by taking 
the nth order MBPT expression and replacing the first-order T2 amplitudes by 
their converged (usually at the CCSD level) equivalents. 

2.2.2. CCSDT + Q(CCSDT). It appears that there is much more to gain in the 
noniterative inclusion of the T4 contribution. In a simplification that is not 
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readily apparent from standard CC methods, the fifth-order T4 contribution can 
be factorized in such a way that all resulting diagrams are computed with n 7 and 
lower procedures [30-32]. Analogously we replace the W u vertex with converged 
T2, T~, and T3 coefficients and generate a noniterative fifth-order-type correction 
for the CCSDT method. The respective algebraic expression is the following: 

E~]a = <4olT(2~)tT~2/2[WN(T~/2 + T3)]c 14o> (10) 

and the total energy within this approach is evaluated according to the formula: 

E = ECCSDT + E ~  (11) 

In this way we obtain a method which is correct through fifth order and the most 
time consuming contribution is that already present in the CCSDT approach. 
Since we include the full T3 contribution in an iterative way and this is an n 8 
scheme, the addition of the n 6 step (the T~/2 part) and n 7 step (the T3 part) in 
Eq. (10) costs only a fraction of the time required for converged results of the 
CCSDT method. 

2.2.3. CCSD + TQ*(CCSD). Another approximation proposed is to carry out 
CC iterations only at the CCSD level, with all the terms required for the scheme 
to be correct through fifth order added on top of the CCSD method. We 
designate this scheme as TQ*(CCSD) [32] because the derivation starting from 
CCSD requires a somewhat different, i.e. Q*, approximation. Here the total 
energy is expressed as follows: 

~[51 j_ ~[51 ~fsl ± ~[51 (12) E = ECCSD + EtaT l + ~ S r  " ~rD + ~ r r  r ~Ob 

The second term in Eq. (12) has already been defined in Eqs. (8), while: 

E ~  = < 4 0 I(T~ 2/2)[ W N (T 2/2 + Tt321)1c 14o > (13) 

The other terms are: 

Ets] = <4olT~ WNT[2] 1 40 > (14) S T  

Et51 = <4olT~ 21. WN T~/2I 4o > (1 5) TD 

E[~  = < 40 IT t321. WN r~zl 14o > (16) 

The T[~ 2] amplitudes are calculated according to the formula: 
abc T~:j = ~Zj <4~j, I W~r:14o> 

Equation (13) differs from Eq. (10) in that all T2 amplitudes are the converged 
infinite order quantities, as required by the derivation [32]. The T4 correction 
defined by Eq. (10) was considered in an originally proposed TQ(CCSD) method 
(see, e.g. [32]), where the converged T 3 amplitudes present in Eq. (10) are 
replaced by T[321. 

The rate-determining step in the present method is the E~J r contribution 
which scales as n 8, however it is computed only once. Out of the remaining 
components of the TQ*(CCSD) contribution Et~IT scales a s  n 6, Err 41 and ,~rD~'[5~ can 
be combined together to form a single n 7 step and, finally, the last term, Et~lb 
requires also a n  n 7 step. Bearing in mind, however, that all the terms occurring 
in Eq. (12), are computed only once, and only CCSD equations are iterated, we 
arrive at substantial savings in the cost of calculations. 

A different rationale lies behind the approximate schemes introduced by 
Paldus and others [15, 33-37], denoted as ACP-D45 = ACP----ACCD and ACP- 
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D45(9) = ACPQ.  These approaches  are based on the observat ion that  neglecting 
certain disconnected quadruple  diagrams within the C C ( S ) D  method  signifi- 
cantly improves the results. Since the diagram(s)  in question are the most  
difficult to  compute  in the C C D  method  their elimination simplifies the method  
considerably.  Paldus et al., by analyzing the U H F  solution to the cyclic polyenes 
in the PPP model,  which is exact for the cases considered in the fully correlated 
limit, were able to demonstrate  that  the good  performance o f  the A C P  schemes 
is associated with the fact that  the elimination o f  the respective diagrams 
corresponds to their approximate  cancellation with certain connected T4 contri- 
butions [33]. The A C P  approaches usually work well for  such quasidegenerate 
situations. However,  this conclusion m a y  be less appropr ia te  outside the ana- 
lyzed PPP  model. 

In  the present s tudy we have employed only one o f  the discussed approxima-  
tions, namely ACP,  which relies on the elimination o f  two out  o f  four  1/2 T~ 
diagrams (see [33] for  details). Though  the other variant,  A C P Q  is superior [35], 
the behavior  o f  the simpler A C P  is sufficiently indicative o f  both  methods  to be 
adequate  for  our  purposes.  

3. Results and discussion 

The calculations have been performed for the D Z P  basis set, taken f rom [18]. 
The computed  correlat ion energies are presented in Tables 1 and 2 for the 
s tandard  and nons tandard  CC methods  respectively, for the sequence o f  values 
o f  the ~ parameter.  Analogously,  in Figs. 1 and 2 the energy vs. ~ curves are 
presented for  the same g r o u p  o f  methods.  In Table 3 we have collected results o f  
C C D  and C C S D  methods  modified in different ways to account  for approximate  

Table 1. Comparison of the FCI and the selected single-reference CC correlation energies for the H 4 

model as a function of parameter ~ (all values in mH). The numbers indicate the difference of CC 
energies from corresponding exact FCI values (the first column) 

c~ FCI a CCD a CCSD CCSDT-1  CCSDT CC CC 
SDTQ-1 SDTQ-2a 

0.0 - 131.361 8.243 5.508 -0.965 -2.302 -0.654 -0.625 
0.005 - 123.831 7.024 4.474 -0.494 - 1.546 -0.448 -0.427 
0.01 - 117.956 5.987 3.603 -0.205 - 1.017 -0.299 -0.285 
0.015 -113.412 5.166 2.928 -0.044 -0.671 -0.201 -0.189 
0 .02 -109.870 4.540 2.431 0.046 -0.450 -0.134 -0.123 
0 . 0 5  -98.647 2.890 1.262 0.142 -0.071 -0.019 -0.007 
0.1 -91.006 2.227 0.911 0.128 -0.022 -0.001 0.009 
0 . 1 2  -89.169 2.121 0.860 0.120 -0.021 -0.001 0.008 
0 . 1 5  -87.121 2.032 0.811 0.110 -0.022 -0.001 0.008 
0.2 -84.953 1.987 0.770 0.099 -0.023 -0.001 0.007 
0.3 -83.042 2.040 0.748 0.088 -0.023 -0.001 0.006 
0.4 -82.460 2.112 0.751 0.086 -0.020 -0.001 0.007 
0.5 -82.333 2.141 0.753 0.084 -0.020 -0.001 0.008 

a Results for some geometries have already been published [ 18] but for completeness we reproduce all 
of them here. The FCI results are obtained from the algorithm and program of Zarrabian S, Sarma, 
CR, Paldus J (1989) Chem Phys Lett 155:183; Harrison RJ, Zarrabian S (1989) Chem Phys Lett 
158:393 
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Table 2. The deviations of the single-reference CC correlation energies for DZP H 4 model from 
corresponding FCI values as a function of parameter ~ (all values in mH). (See text for the 
explanation of abbreviations used for individual approximate CC approaches.) 

c~ FCI a ACP ACP ACP CCSD + CCSD + CCSDT + 
(CCD) (CCSD) (CCSDT) T(CCSD) TQ*(CCSD) Q(CCSDT) 

0.0 - 131.361 7.746 5.059 -0.784 -3.969 -0.869 0.475 
0.005 - 123.831 5.690 3.142 - 1.843 - 1.999 -0.526 0.063 
0.01 - 117.956 4.352 1.940 -2.243 - 1 .015  -0.310 -0.062 
0.015 -113,412 3.527 1.241 -2.246 -0.526 -0.194 -0.080 
0.02 - 109.870 3.027 0.862 -2.056 -0.276 -0.133 -0.067 
0.05 -98.647 2.179 0.513 -0.890 0.040 -0.041 -0.007 
0.1 -91.006 1.894 0.562 -0.392 0.077 -0.004 0.002 
0.12 -89.169 1.833 0.558 -0.340 0.077 0.002 -0.002 
0.15 -87.121 1.777 0.544 -0.303 0.073 0.007 -0.001 
0.2 -84.953 1.749 0.521 -0.286 0.067 0.011 0.001 
0.3 -83.042 1.791 0.489 -0.298 0.058 0.012 0.001 
0.4 -82.460 1.848 0.475 -0.314 0.056 0.012 0.002 
0.5 -82.333 1.870 0.471 -0.320 0.056 0.012 0.003 

a See footnote to Table 1 
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Fig. 1. The single-reference 
CC relative energies AE, 
AE = Ecc - Evcl, (in mH) 
as a function of parameter 
(see text) for the ground 
state of the DZP H 4 
model system. The various 
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Fig. 2. Comparison of the 
single-reference CC relative 
energies AE (see Fig. 1) as a 
function of parameter ~ for 
the ground state of the H 4 
(all values in mH). The 
various CC approaches are 
identified as follows: 
(O) ACP(CCD); ( i )  
(ACP(CCSD); ( , )  
ACP(CCSDT); 
((3) CCSDT + Q(CCSDT); 
(D) CCSD + T(CCSD); 
(©) CCSD + TQ*(CCSD) 
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Table 3. Effect of the quadruples on the CCD and CCSD correlation energies for the H 4 model as 
a function of parameter ct (all values in mH). The numbers indicate the difference of CC energies 
from corresponding exact FCI values (the first column) (see text for the explanation of abbreviations 
used for approximate CC methods) 

c~ FCI a CCD a ACP CC CCSD ACP CC 
(CCD) DQ-la (CCSD) SDQ-la 

0.0 - 131.361 8.243 7.746 9.337 5.508 5.059 6.663 
0.005 - 123.831 7.024 5.690 7.730 4.474 3.142 5.228 
0.01 - 117.956 5.987 4.352 6.438 3.601 1.940 4.090 
0.015 -113.412 5.166 3.527 5.456 2.928 1.241 3.245 
0.02 - 109.870 4.540 3.027 4.728 2.431 0.862 2.638 
0.05 -98.647 2.890 2.179 2.905 1.262 0.513 1.281 
0.1 -91.006 2.227 1.894 2.227 0.911 0.562 0.913 
0.12 -89.169 2.121 1.833 2.124 0.860 0.558 0.865 
0.15 -87.121 2.032 1.777 2.038 0.811 0.544 0.820 
0.2 -84.953 1.987 1.749 1.997 0.770 0.521 0.783 
0.3 -83.042 2.040 1.791 2.051 0.748 0.489 0.763 
0.4 -82.460 2.112 1.848 2.123 0.751 0.475 0.765 
0.5 -82.333 2.141 1.870 2.151 0.753 0.471 0.766 

a See footnote to Table 1 

connec ted  quad rup le  cont r ibut ions .  As  has  a l ready  been ment ioned ,  the value o f  
the ~ p a r a m e t e r  de termines  the mul t i -conf igura t iona l  charac te r  o f  the reference 
funct ion.  The  F C I  coefficients given in [18] have been recalcula ted  by  us to show 
tha t  for  a greater  than  0.02 the reference funct ion recovers  its s ingle-configura-  
t ional  character ,  the weight  o f  the g round  state conf igura t ion  exceeding 90%. 
This  can be inferred also f rom the dependence  o f  the cor re la t ion  correc t ions  on 
the a p a r a m e t e r  shown in all three tables.  We  see tha t  for  the nondegenera te  
region,  a > 0.02, all the con t r ibu t ions  are  stable,  showing no subs tant ia l  changes  
and  even the s implest  o f  me thods  app l ied  gives g o o d  results. Because o f  the 
above  d i c h o t o m y  we can address  the two regions separately.  

3. I. Region of quasidegenerate reference function" ~ < 0.02 

The  present  range o f  e values creates ra ther  a severe test for  the single reference 
based  CC methods .  F o r  the s t anda rd  approaches ,  see Table  1, n 6 methods ,  i.e. 
C C D  and  C C S D  give er rors  o f  several  mhar t rees ,  the la t ter  being bet ter  by  a b o u t  
2.5 mhar t ree .  A t  first sight those discrepancies  seem to be insignificant,  however ,  
we should  be aware  tha t  the system is ra ther  small  and  those errors  a m o u n t  to 
a b o u t  6 - 7 %  o f  the to ta l  cor re la t ion  energy for  the first po in t  and  decrease to 
a b o u t  4% for the last  po in t  o f  the region assumed by  us to be o f  quas idegenera te  
nature .  The  inclusion o f  t r iples rad ica l ly  improves  the results.  I t  is unusual  that  
the a p p r o x i m a t e  CCSDT-1  m e t h o d  works  so well for  the degenera te  region,  
where  the results  are bet ter  than  those ob ta ined  with the full C C S D T  scheme. 
We cons ider  this inver ted  h ie rarchy  o f  the two me thods  accidental .  The  accumu-  
la ted evidence demons t ra t e s  tha t  for  the grea t  ma jo r i ty  o f  cases the la t ter  
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method works substantially better also for the degenerate case. However, in 
many quasidegenerate examples in the literature, the CCSDT correction over- 
shoots the exact results. This is also the case in the present calculations. The full 
CCSDT error is smaller than the corresponding CCSD one being for the first 
point at ~ = 0.0 equal to -2.302 mhartree and at the last point in the region, 
-0.450 mhartree. One may note that this performance of the CCSDT method is 
in line with what we have observed for other systems for which the FCI values 
are known. For example, for the distorted geometries of the several first row 
hydrides studied [26a] the error is about 1-2 mhartrees, while for the equilibrium 
geometries it goes down to a few tenths of a millihartree. 

For methods correct through fifth order we observe substantial improve- 
ments of the results compared to the CCSDT method. It is obvious that for the 
degenerate reference function connected quadruples play a much more important 
role. For e = 0.00 the quadruple correction is equal to 1.633 mhartrees and is 
positive. An inclusion into T4 of disconnected pentuples improves the results 
only slightly by a few hundredths of a millihartree. 

The results collected in Table 2 are generally improved with respect to those 
in Table 1. First of all we observe that the ACP corrections bring the respective 
CCD and CCSD values closer to the FCI limit. They are in all cases negative 
with rather insignificant differences between the CCD and CCSD methods. The 
improvement, however, is meaningful and oscillates around 1.5 mhartree, with 
the exception of the first point, where it is smaller (ca. 0.5 mhartree). In Table 3 
we present CCD, CCSD and their ACP modified equivalents. In addition, we 
have also computed the corrections originating from the inclusion into both 
methods of fifth-order-type quadruples, see Eq. (10), denoted as CC(S)DQ-la. 
We observe that the sign of the ACP and CC(S)DQ-la corrections are opposite. 
The latter, in fact, shows that T4 moves the results away from the exact value. 
The positive values of the T4 type corrections can be explained in the context of 
the full CCSDT results. Since the latter method overshoots, the quadruple 
correction is expected to bring the correlation back to the correct value. In fact 
the CCSDT based quadruple corrections are even more positive than those 
found for the CCSD method due to the inclusion of the T3 operator into the T4 
equations, see Eq. (10). It is interesting that the T4 correction decreases very 
rapidly as the reference function regains its single-configurational character. This 
is true both for CCSDT as well as CC(S)D schemes. In fact, moving from one 
point to another over the whole quasidegenerate region the T4 correction is 
reduced by about 40%. When going from ~ = 0.02 to ~ = 0.05, which designate 
the region where the reference function most radically changes its multiconfigu- 
rational character, the correction is reduced 5 to 10 times. This is also true to 
some extent for the T3 correction evaluated with respect to the CC(S)D methods. 
we may conclude this discussion by observing that including the T4 correction 
alone into the CCSD method may in certain cases be worse than the correspond- 
ing CCSD results. On the other hand, when this correction is included into the 
CCSDT method the results are always significantly improved. Consequently, 
when we include the ACP correction- supposed to be negative- into the 
CCSDT method which already gives too negative values for this example, we 
may expect that ACP corrected results will be worse. This is in fact the case (see 
the respective column in Table 2) for all points studied with the exception of the 
first one corresponding to the strongest degeneracy, where this correction is 
positive and nicely improves the correlation correction to the value obtained by 
the CCSDTQ-1 scheme. 
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For the noniterative methods even CCSD +T(CCSD)  works fairly well 
for this case, but is clearly poorer in the degenerate region as would be expected. 
Relatively good behavior has also been observed in polyene model problems 
[381. 

Finally the best results for the degenerate region out of all the methods 
considered here are obtained with the Q(CCSDT) method. Generally, this 
approximation gives results comparable in accuracy to those of CCSDTQ-1, and 
perhaps fortuitously, somewhat better. In the case of the H 4 system the improve- 
ment is significant. Here this approach gives results better by 0.18, 0.38, 0.24, and 
1.2 for the values of e: 0.000, 0.005, 0.010, 0.015, respectively (all energies in 
mhartrees). Thus, besides the first point, the Q(CCSDT) corrections added to the 
CCSDT energy give an answer different from the FC! limit by only a few 
hundredth of a mhartree. We emphasize here that this occurs for the multi-refer- 
ence region where, in general, one cannot expect the single-reference methods to 
work well. However; as this is only a four electron example, methods including 
T 4 should be close to the FCI results. The additional positive aspect of the 
Q(CCSDT) approach is that the connected quadruple contributions are com- 
puted in a fraction of the time required for the CCSDT calculations due to the 
fact that i) they are computed only once and ii) they are computed with a n  n 7 

procedure. We would like to mention that the good performance of this method 
does not appear to be accidental, as we have found it to work very well also for 
other cases [28], but still a small number of cases. 

The main disadvantage of the Q(CCSDT) approach is that its base method, 
i.e., CCSDT requires an n 8 procedure thereby limiting its application. In order to 
circumvent this difficulty there has been proposed a CCSD +TQ*(CCSD) 
method [32], also correct through fifth order which is based on the CCSD 
method, see Eqs. (12, 13). The results shown in the last column of Table 2 are 
also very plausible; in fact they are very close to those obtained for the 
CCSDTQ-1 method but at a fraction of the cost required for the latter. 

The same information about the behavior of different methods may be 
obtained from Figs. 1 and 2, where the deviations from FCI are plotted vs. the 
c~ parameter. We observe that the  curves corresponding to the methods which 
include quadruple contributions in an iterative or noniterative manner nearly 
coincide With the FCI line. Note that the latter line - not drawn in the Figures 
for the sake of transparency - is a horizontal straight line passing through the 
0.000 point. 

3.2. Region of nondegenerate reference function: ~ > 0.02 

The general feature shared by all methods considered is that for the region of 
> 0.02, all the values are very stable and practically do not change from point 

to point. In addition, here we observe that all the approaches behave more 
regularly, i.e. the more elaborate method gives better results. Since this is a 
region where the reference state is supposed to be well described by a single 
configuration, the results should be much better. We observe that this is true 
here. All the values in Table 1 with the exception of the CCD method are smaller 
than 1 mhartree, with the latter results being slightly over 2 mhartrees. As we 
may expect, the inclusion of singles brings the correlation energy down by about 
1.4 mhartree, thus reducing the FCI error to 0.75-0.9 mhartree. It seems that 
those limited CC methods are incapable of a more accurate reproduction of the 
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FCI values primarily due to the neglect of triples. Hence they introduce an error 
already at the fourth-order level. The simplest method which is able to include 
fourth-order triples, the CCSDT-1, gives excellent results, differing from the 
exact values throughout the nondegenerate region by less than 0.1 mhartree. 
Consequently, the full inclusion of triples: occurring at the full CCSDT level 
reduces the error to 0.02 mhartree, although it should be noted that this method 
overshoots for that region. Comparing the CCSDT values with the CCSDTQ-1 
approach, we observe that the error in the former method should be assigned 
entirely to fifth-order-type connected quadruples. We see that the inclusion of 
quadruples recovers nearly exactly the FCI values, the error being of the order 
of 1/thartree. The same is true for the second T4 scheme including disconnected 
pentuples although in this case the differences are of the order of a few #hartree. 
The presented spectrum of results shows what can be expected from each CC 
method for a situation where the reference is well defined in terms of a single 
configurational wavefunction. 

Within the same region, we may compare the performance of the second 
group of methods. First of all we observe that the inclusion of the Paldus and 
Dykstra modification into CCD and CCSD methods to obtain ACP improves 
the results; we get closer to the FCI values by about 0.3 mhartree. However, 
incorporating the same correction into the CCSDT method gives significantly 
worse results, again the same situation as for the other region is repeated. The 
deviation from the FCI values increases from - 0.02 mhartree for CCSDT to ca. 
-0.3 mhartree for ACP-CCSDT results. The two noniterative schemes give 
practically full agreement with the exact values. The first CCSDT + Q(CCSDT) 
provides results practically identical to those obtained with the iterative 
CCSDTQ-1 scheme, matching the exact values with an accuracy of 1 ~hartree. 
The second method, CCSD + TQ*(CCSD) (last column in Table 2), gives also 
excellent results, differing from the exact ones by about 2-12 #hartree. 

It is obvious that for a system with a greater number of electrons the 
deviations from the exact values may increase. In particular for 03, frequencies 
computed at the CCSD + T(CCSD) and CCSDT-1 level, are poorer than those 
from CCSD [39], attesting to some imbalance in the approximations involved. 
On the other hand, the CCSDT method works very well for this difficult example 
[40]. Similarly, the very shallow potential curve for Be2 is not described 
adequately compared to FCI except in the full CCSDT method, with CCSD 
and CCSDT-1 showing no minimum [26b]. Hence, the potential inadequacy 
of the H 4 problem as a model for more difficult cases has to be borne in 
mind. 

4. Conclusion 

We have studied the behavior of various coupled-cluster methods as applied to 
the H 4 system with varied degree of degeneracy for the reference function. The 
results show that the most sophisticated methods can recover the correlation 
energy even for the exactly degenerate situation with an accuracy up to 
0.5 mhartree. It also follows that for the degenerate region higher clusters become 
important and, in particular, the inclusion of the T4 cluster may improve the 
results by up to two mhartrees. It is also evident that one cannot expect accurate 
results for this case from the CCD or CCSD method, although the latter is 
considerably better. The ACP corrected methods give slightly better results, 
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although this correction in all but one case works in the opposite direction to 
that obtained from the connected T4 contribution. In particular when applied to 
the CCSDT method, the ACP corrections go in the wrong direction. 

On the other hand, it is not just the final value of the correlation corrections 
for the energy and other properties which is important from the viewpoint of an 
efficient computational method. We should rather consider a proper balance 
between the accuracy and the cost efficiency. At least for this simple example, the 
superior approach is that denoted as CCSD + TQ*(CCSD). From the discussion 
presented in the previous sections it follows that this scheme requires only one 
step of n 8 procedure and two steps of n 7, all of them computed noniteratively. 
The quality of the results for this example favors this method as that suitable for 
efficient and accurate calculations of correlation corrections. However, more 
difficult examples must also be considered [32, 41]. 
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